Two New ent-Kaurenoids from Cacalia pilgeriana

Er Wei LI, Kun GAO*, Zhong Jian JIA*, Xin ZHAO

College of Chemistry and Chemical Engineering, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: Two new *ent*-kaurenoids, 19-acetyl-*ent*- 3β , 17-dihydroxykaur-15-ene (1), 19-acetyl-*ent*- 3β -hydroxykaur-15-en-17-al (2) were isolated from *Cacalia pilgeriana*. Their structures were elucidated by spectroscopic methods.

Keywords: Cacalia pilgeriana, Compositae, ent-kaurenoids.

Phytochemically, the genus *Cacalia* was characterized by containing sesquiterpenes¹⁻³, only Nasr reported a series of kaurenoid diterpenes from *Cacalia bulbifera*⁴. In this paper, we describe the structural elucidation of two new *ent*-kaurenoids isolated from the methanol extract of the roots of *Cacalia pilgeriana* (Diels) Ling.

Compound 1 was obtained as colorless crystal from acetone, mp. 157-158°C, $[\alpha]_{D}^{23}$ -55 (c 3.4, CH₃OH). The molecular formula $C_{22}H_{34}O_4$ was yielded based on the EI-MS at m/z 362 ([M]⁺), which was also confirmed by HRESI-MS at m/z 345.2425 $[M-H_2O+H]^+$ (calcd. 345.2424) and 327.2299 $[M-2H_2O+H]^+$ (calcd. 327.2319). The ¹H NMR spectrum of **1** showed the signals for three tertiary methyls (δ 1.03, 1.13 and 2.07, s, each 3H), two oxygenated methylenes (δ 4.12 and 4.33, d, each 1H, J = 11.2 Hz; δ 4.55, s, 2H), an oxygenated methine (δ 3.28, dd, 1H, J = 11.2, 5.2 Hz) and an olefinic methine (δ 5.48, s, 1H). Furthermore, the ¹³C NMR and DEPT spectra showed 22 signals for $3 \times CH_3$, $9 \times CH_2$ (two of which were oxygenated), $5 \times CH$ (one was oxygenated), $5 \times C$ (one was carbonyl). The NMR spectral data of **1** were similar to those of *ent*- 3β , 19-dihydroxykaur-16-ene and its diacetated derivative⁵, the differences were only that the olefinic bond in 1 was located at C-15 (16), and a hydroxylmethyl group at C-17. This was confirmed by the correlation of H-15 with C-17, and H-17 with C-15 in the HMBC spectrum. The acetyl group located at C-19 which was deduced by the presence of the HMBC cross peak of H-19 with CH₃CO ($\delta_{\rm C}$ 171.18). The chemical shift of H-3 (δ 3.28, dd, J = 11.2, 5.2 Hz) showed the hydroxyl group was α -orientation⁶. Thus, compound 1 was determined as 19-acetyl-ent-3β, 17-dihydroxykaur-15-ene.

Compound 2, colorless gum, $[\alpha]_{D}^{23}$ -82 (*c* 0.1, CH₃OH), has the molecular formula C₂₂H₃₂O₄ deduced from its HRESI-MS at *m/z* 361.2369 [M+H]⁺ (calcd. 361.2373). Its NMR spectral data were very similar to those of **1** except for the presence of a –CHO in

^{*} E-mail:jiazj@lzu.edu.cn; miaozm@lzu.edu.cn

Er Wei LI et al.

2 (C-17: δ_H , 9.72, s, 1H; δ_C , 189.35) instead of the –CH₂OH in **1** (C-17: δ_H , 4.55, s, 2H; δ_C , 75.02). Therefore, compound **2** was elucidated as 19-acetyl-*ent*-3 β -hydroxykaur-15-en-17-al.

Table 1 1 H NMR (400 MHz), 13 C NMR (100 MHz) and DEPT data of 1, 2 (CDCl₃, TMS, δ ppm)

No.	$1 \delta_{\mathrm{H}}$	2 δ _H	$1 \delta_C$	DEPT	2 δ _C	DEPT
1			39.15	CH_2	38.38	CH ₂
2			25.30	CH_2	25.06	CH_2
3	3.28 (dd, 11.2, 5.2)	3.27 (dd, 11.2, 6.0)	79.17	CH	79.04	CH
4			42.27	С	42.23	С
5			55.49	CH	55.43	CH
6			19.44	CH_2	19.18	CH_2
7			43.45	CH_2	42.75	CH_2
8			48.95	С	46.84	С
9			48.06	CH	46.64	CH
10			38.99	С	38.81	С
11			18.78	CH_2	18.62	CH_2
12			27.18	CH_2	27.21	CH_2
13	2.64 (m)	3.04 (m)	41.58	CH	40.80	CH
14			38.77	CH_2	37.90	CH_2
15	5.48 (s)	6.55 (s)	140.35	CH	139.99	CH
16			141.31	С	148.83	С
17	4.55 (s)	9.72 (s)	75.02	CH_2	189.35	CH
18	1.13 (s)	1.14 (s)	22.39	CH_3	22.49	CH_3
19	4.12 (d, 11.2), 4.33 (d, 11.2)	4.11 (d, 11.7), 4.32 (d, 11.7)	65.34	CH_2	65.20	CH_2
20	1.03 (s)	1.06 (s)	17.81	CH_3	17.84	CH_3
OAc			171.18	С	171.05	С
	2.07 (s)	2.07 (s)	21.10	CH ₃	21.10	CH ₃

Acknowledgments

This work was supported by the NNSFC (No.29972017 and No. 20021001 - QT Program).

References

- 1. S. M. Zhang, G. L. Zhao, R. Li, G. Q. Lin, Phytochenistry, 1998, 48(3), 519.
- 2. M. J. Mao, Z. J. Jia, Planta Medica, 2002, 68(1), 55.
- 3. M. J. Mao, Z. D. Yang, Z. J. Jia, Planta Medica, 2003, 69(8), 745.
- 4. A. E. E. Nasr, K. Genjiro, T. Tsunematsu, Phytochenistry, 1975, 14(7), 1660.
- 5. P. Franco, S. Giuseppe, R. H. James, Phytochenistry, 1980, 19(6), 1237.
- 6. J. C. Stephen, G. Paul, H. B. Michael, R. L. John, Phytochemistry, 1995, 39(1), 11.

Received 21 May, 2004